intuitively comprehended by the scientist. The statement on page 39 by Henri Poincaré is a vivid example of the process.
In another context, people occasionally say about someone, “The words sound okay, but something tells me not to trust him (or her).” Or “I can’t tell you in words exactly what it is, but there is something about that person that I like (or dislike).” These statements are intuitive observations that both sides of the brain are at work, processing the same information in two different ways.
Parallel Ways of Knowing
—J. E. Bogen
“Some Educational
Aspects of Hemisphere
Specialization” in UCLA
Educator, 1972
The Duality of Yin and Yang
— I Ching or Book of Changes,
a Chinese Taoist work
Dr. J. William Bergquist, a mathematician and specialist in the computer language known as APL, proposed in a paper given at Snow-mass, Colorado, in 1977 that we can look forward to computers that combine digital and analog functions in one machine. Dr. Bergquist dubbed his machine “The Bifurcated Computer.” He stated that such a computer would function similarly to the two halves of the human brain.
“The left hemisphere analyzes over time, whereas the right hemisphere synthesizes over space.”
—Jerre Levy
“Psychobiological
Implications of Bilateral
Asymmetry,” 1974
“Every creative act involves . . . a new innocence of perception, liberated from the cataract of accepted belief.”
—Arthur Koestler
The Sleepwalkers, 1959
The two modes of information processing
Inside each of our skulls, therefore, we have a double brain with two ways of knowing. The dualities and differing characteristics of the two halves of the brain and body, intuitively expressed in our language, have a real basis in the physiology of the human brain. Because the connecting fibers are intact in normal brains, we rarely experience at a conscious level conflicts revealed by the tests on split-brain patients.
Nevertheless, as each of our hemispheres gathers in the same sensory information, each half of our brains may handle the information in different ways: The task may be divided between the hemispheres, each handling the part suited to its style. Or one hemisphere, often the dominant left, will “take over” and inhibit the other half. The left hemisphere analyzes, abstracts, counts, marks time, plans step-by-step procedures, verbalizes, and makes rational statements based on logic. For example, “Given numbers a, b, and c—we can say that if a is greater than b, and b is greater than c, then a is necessarily greater than c.” This statement illustrates the left-hemisphere mode: the analytic, verbal, figuring-out, sequential, symbolic, linear, objective mode.
On the other hand, we have a second way of knowing: the right-hemisphere mode. We “see” things in this mode that may be imaginary—existing only in the mind’s eye. In the example given just above, did you perhaps visualize the “a, b, c” relationship? In visual mode, we see how things exist in space and how the parts go together to make up the whole. Using the right hemisphere, we understand metaphors, we dream, we create new combinations of ideas. When something is too complex to describe, we can make gestures that communicate. Psychologist David Galin has a favorite example: try to describe a spiral staircase without making a spiral gesture. And using the right-hemisphere mode, we are able to draw pictures of our perceptions.
My students report that learning to draw makes them feel more “artistic” and therefore more creative. One definition of a creative person is someone who can process in new ways information directly at hand—the ordinary sensory data available to all of us. A writer uses words, a musician notes, an artist visual perceptions, and all need some knowledge of the techniques of their crafts. But a creative individual
Dean Wesley Smith, Kristine Kathryn Rusch
Martin A. Lee, Bruce Shlain