falling around the Earth.
If something provides a supplemental source of acceleration—something added to the acceleration prompted by Earth’s gravity—now your weight will change. Take your bathroom scale into an elevator and watch the readout as you take off. You will briefly gain weight, and perhaps a minor reputation around the building. The elevator’s acceleration has added an extra earthward pull to the earthward pull of gravity. Contrariwise, when the elevator approaches the top floor and slows down, the deceleration renders you briefly lighter; it has accelerated you skyward, counteracting some of the Earth’s downward pull.
Why is there this force, this pull between objects? Poking around on the Web for a suitably patient entity to ask, I came upon the Gravity Research Foundation, founded by multimillionaire businessman and fire alarm magnate Roger Babson. After gravity pulled Babson’s sister toward the bottom of a river and she drowned, he became history’s most voluble antigravity activist, publishing screeds like Gravity: Our Enemy No. 1. If I were Babson, I might have nominated water or currents for the number-one spot, but the man was unshakable in his ire.*
Babson is dead, but the foundation lives on. It no longer characterizes its efforts as antigravity, a term that has come to connote “crackpot.” “We are neither ‘pro-gravity’ nor ‘anti-gravity,’” director George Rideout, Jr., told a journalist who profiled the organization in 2001. They are, he said, just trying to learn as much as possible about it. I contacted Rideout seeking an explanation of why gravity exists. He told me to go ask a physicist.
I did. I made a hobby of it. But why are two masses drawn together, I’d say. “Mary, Mary, Mary,” was the kind of response I tended to get. “Because space-time exists,” said one physicist. “What does ‘why’ mean?” said another. Perhaps gravity is a mystery even to those who understand it. I can well imagine that the prospect of messing with it must have been daunting to the pioneers of aerospace medicine out in the desert in 1948.
DISMAYED BUT UNDETERRED, Simons and his crew launched four more Alberts. Albert III’s rocket exploded. Alberts IV and V were, like Albert II, victims of malfunctioning parachute systems. Albert VI made it to the ground with his vital signs little changed, but died of heat prostration while rescuers searched for the nose cone. Eventually the Air Force—and you do wonder what took them so long—stopped naming their ill-fated gravity monkeys Albert. More importantly, they began to move away from the V-2s in favor of a smaller, less problematic* rocket called the Aerobee.
Patricia and Michael, in 1952, were the first monkeys to survive a trip to Weightlessville. The macaques’ heart rate and breathing was monitored throughout the flight and appeared to be normal. Biomedical research from this era appears to have been fixated on pulse and respiration. Publicity images from that era invariably show a physician in a white coat and crewcut, holding a stethoscope to a monkey’s narrow chest. That’s all the Albert papers reported on. You couldn’t diagnose much from it—yep, still alive—but this was the limit, circa 1950, of the data you could transmit back from a rocket 30 or 50 or 80 miles up. To rule out any subtler effects of weightlessness, the Air Force would need a subject they could interview: a human. For that, they needed a safer way to go about it.
It was a team of brothers, Luftwaffe aerospace medicine pioneers Fritz and Heinz Haber, who, in 1950, dreamed up a technique known today as parabolic flight. The Habers theorized that if a pilot flies the same kind of parabolic arc as a suborbital rocket (or a baseball pop fly), then the passengers, for anywhere from 20 to 35 seconds at the top and the downward segments of the arc, will experience weightlessness, just as the monkeys had. If the pilot then pulls out of the downward
Dean Wesley Smith, Kristine Kathryn Rusch
Martin A. Lee, Bruce Shlain