The Milky Way and Beyond

Free The Milky Way and Beyond by Britannica Educational Publishing Page A

Book: The Milky Way and Beyond by Britannica Educational Publishing Read Free Book Online
Authors: Britannica Educational Publishing
any of a whole range of wavelengths and thus produce a continuous range of absorption of radiation. The main source of light absorption in the hotter stars is the photoionization of hydrogen atoms, both from ground level and from higher levels.
S PECTRAL A NALYSIS
    The physical processes behind the formation of stellar spectra are well enoughunderstood to permit determinations of temperatures, densities, and chemical compositions of stellar atmospheres. The star studied most extensively is, of course, the Sun, but many others also have been investigated in detail.
    The general characteristics of the spectra of stars depend more on temperature variations among the stars than on their chemical differences. Spectral features also depend on the density of the absorbing atmospheric matter, and density in turn is related to a star’s surface gravity. Dwarf stars, with great surface gravities, tend to have high atmospheric densities; giants and supergiants, with low surface gravities, have relatively low densities. Hydrogen absorption lines provide a case in point. Normally, an undisturbed atom radiates a very narrow line. If its energy levels are perturbed by charged particles passing nearby, it radiates at a wavelength near its characteristic wavelength. In a hot gas, the range of disturbance of the hydrogen lines is very high, so that the spectral line radiated by the whole mass of gas is spread out considerably; the amount of blurring depends on the density of the gas in a known fashion. Dwarf stars such as Sirius show broad hydrogen features with extensive “wings” where the line fades slowly out into the background, while supergiant stars, with less-dense atmospheres, display relatively narrow hydrogen lines.
C LASSIFICATION OF S PECTRAL T YPES
    Most stars are grouped into a small number of spectral types. The
Henry Draper Catalogue
and the
Bright Star Catalogue
list spectral types from the hottest to the coolest stars. These types are designated, in order of decreasing temperature, by the letters O, B, A, F, G, K, and M. This group is supplemented by R- and N-type stars (today often referred to as carbon, or C-type, stars) and S-type stars. The R-, N-, and S-type stars differ from the others in chemical composition; also, they are invariably giant or supergiant stars. With the discovery of brown dwarfs, objects that form like stars but do not shine through thermonuclear fusion, the system of stellar classification has been expanded to include spectral types L and T.
    The spectral sequence O through M represents stars of essentially the same chemical composition but of different temperatures and atmospheric pressures. This simple interpretation, put forward in the 1920s by the Indian astrophysicist Meghnad N. Saha, has provided the physical basis for all subsequent interpretations of stellar spectra. The spectral sequence is also a colour sequence: the O- and B-type stars are intrinsically the bluest and hottest; the M-, R-, N-, and S-type stars are the reddest and coolest.
    In the case of cool stars of type M, the spectra indicate the presence of familiar metals, including iron, calcium, magnesium, and also titanium oxide molecules (TiO), particularly in the red and green parts of the spectrum. In the somewhat hotter K-type stars, the TiO features disappear, and the spectrum exhibits a wealth of metallic lines. A few especially stable fragments of molecules such ascyanogen (CN) and the hydroxyl radical (OH) persist in these stars and even in G-type stars such as the Sun. The spectra of G-type stars are dominated by the characteristic lines of metals, particularly those of iron, calcium, sodium, magnesium, and titanium.
    The behaviour of calcium illustrates the phenomenon of thermal ionization. At low temperatures a calcium atom retains all of its electrons and radiates a spectrum characteristic of the neutral, or normal, atom; at higher temperatures collisions between atoms and electrons and the absorption of

Similar Books

The Hero Strikes Back

Moira J. Moore

Domination

Lyra Byrnes

Recoil

Brian Garfield

As Night Falls

Jenny Milchman

Steamy Sisters

Jennifer Kitt

Full Circle

Connie Monk

Forgotten Alpha

Joanna Wilson

Scars and Songs

Christine Zolendz, Frankie Sutton, Okaycreations