that are vibrating all around us—in fact, right through us. Of course, in Maxwell's day, electromagnetic technology was less developed, but among scientists his feat was no less recognized: through the language of fields, Maxwell had shown that electricity and magnetism, although initially viewed as distinct, are really just different aspects of a single physical entity.
Later on, we'll encounter other kinds of fields—gravitational fields, nuclear fields, Higgs fields, and so on—and it will become increasingly clear that the field concept is central to our modern formulation of physical law. But for now the critical next step in our story is also due to Maxwell. Upon further analyzing his equations, he found that changes or disturbances to electromagnetic fields travel in a wavelike manner at a particular speed: 670 million miles per hour. As this is precisely the value other experiments had found for the speed of light, Maxwell realized that light must be nothing other than an electromagnetic wave, one that has the right properties to interact with chemicals in our retinas and give us the sensation of sight. This achievement made Maxwell's already towering discoveries all the more remarkable: he had linked the force produced by magnets, the influence exerted by electrical charges, and the light we use to see the universe—but it also raised a deep question.
When we say that the speed of light is 670 million miles per hour, experience, and our discussion so far, teach us this is a meaningless statement if we don't specify relative to
what
this speed is being measured. The funny thing was that Maxwell's equations just gave this number, 670 million miles per hour, without specifying or apparently relying on any such reference. It was as if someone gave the location for a party as 22 miles north without specifying the reference location, without specifying north of
what.
Most physicists, including Maxwell, attempted to explain the speed his equations gave in the following way: Familiar waves such as ocean waves or sound waves are carried by a substance, a medium. Ocean waves are carried by water. Sound waves are carried by air. And the speeds of these waves are specified
with respect to the medium.
When we talk about the speed of sound at room temperature being 767 miles per hour (also known as Mach 1, after the same Ernst Mach encountered earlier), we mean that sound waves travel through otherwise still air at this speed. Naturally, then, physicists surmised that light waves—electromagnetic waves—must also travel through some particular medium, one that had never been seen or detected but that must exist. To give this unseen light-carrying stuff due respect, it was given a name: the
luminiferous aether,
or the
aether
for short, the latter being an ancient term that Aristotle used to describe the magical catchall substance of which heavenly bodies were imagined to be made. And, to square this proposal with Maxwell's results, it was suggested that his equations implicitly took the perspective of someone at rest with respect to the aether. The 670 million miles per hour his equations came up with, then, was the speed of light relative to the stationary aether.
As you can see, there is a striking similarity between the luminiferous aether and Newton's absolute space. They both originated in attempts to provide a reference for defining motion; accelerated motion led to absolute space, light's motion led to the luminiferous aether. In fact, many physicists viewed the aether as a down-to-earth stand-in for the divine spirit that Henry More, Newton, and others had envisioned permeating absolute space. (Newton and others in his age had even used the term "aether" in their descriptions of absolute space.) But what actually
is
the aether? What is it made of? Where did it come from? Does it exist everywhere?
These questions about the aether are the same ones that for centuries had been asked about absolute space. But