feldspar.
What is being suggested sounds, admittedly, absurd: that the Egyptians had some force as powerful as our modern electricity, and that this force was based on sound. We all know the story of Caruso breaking a glass by singing a certain note at high volume. We can also see that if a pointed drill was attached to one of the prongs of a giant tuning fork, it could, in theory, cut into a piece of granite as easily as a modern rotating drill. Dunn is suggesting, in effect, a technology based on high-frequency sound. But I must admit that precisely how this force could have been used to drive the 9-foot bronze saw blade that cut the sarcophagus in the King’s Chamber eludes my comprehension. Possibly some reader with a more technically-oriented imagination can think up a solution.
Unfortunately, the vibration theory fails to explain Dunn’s observation about the drill rotating five hundred times as fast as a modern drill. We must assume that, if he is correct, the Egyptians knew how to use both principles.
In the course of making a television programme, Christoper Dunn demonstrated the incredible technical achievement of the Egyptian engineers to another engineer, Robert Bauval, by producing a metal instrument used by engineers to determine that a metal surface has been machined to an accuracy of a thousandth of an inch, and holding it against the side of the benben stone in the Cairo Museum. He then applied the usual test—shining an electric torch against one side of the metal, and looking on the other side to see if any gleam of light could be seen. There was none whatever. Fascinated by the test, Bauval took him to the Serapeum at Saqqara, where the sacred bulls were entombed in giant sarcophagi made of basalt. These proved to have the same incredible accuracy. Why, Bauval asked me when telling me about all this, should the ancient Egyptians have needed accuracy to the thousandth of an inch for a sarcophagus? Moreover, how did they achieve it without modern engineering techniques?
The notion of ultrasonic drills at least provides a possible answer to the otherwise insoluble riddle of Hancock’s swan-necked vases into which it was impossible to insert a little finger. Dunn says that the technique is used ‘for the machining of odd-shaped holes in hard, brittle materials’. The technique for hollowing out such vases, even with a long drill, down a long and narrow neck still defies the imagination. But with Dunn’s suggestions, it begins to seem slightly less absurd.
Petrie would have been even more embarrassed about his Naqada vases if he had known that vessels of the same type had been discovered in strata dating from 4000 BC—at a time when Egypt was supposed to be full of nomads in tents, and that these include the swan-neck vases.
It is impossible to avoid the conclusion that, even if the Naqada people were not the technically accomplished super-race of our speculations, Petrie’s ‘New Race’ nevertheless really existed, and that it predated pharaonic Egypt by at least a thousand, possibly several thousand years. These vases seem to be the strongest evidence so far for Schwaller de Lubicz’s ‘Atlanteans’.
Dobecki, West’s geophysicist, was also making some interesting discoveries. One of the basic methods of studying deeper layers of rock is through vibration. A metal plate is struck with a sledgehammer, and the vibrations go down through the rock, and are reflected back by various strata. These echoes are then picked up by ‘geophones’ placed at intervals along the ground, and their data interpreted by a computer.
One of the first discoveries Dobecki made was that a few metres under the front paws of the Sphinx there seems to be some kind of underground chamber—possibly more than one. Legend has always asserted the existence of such chambers, containing ‘ancient secrets’, but they are usually cited by writers who might be dismissed as cranks—for example, a book called Dramatic