that one had to husband it and use it economically
if one wanted to become the "master of all things." Such an attitude
had been unknown to the Middle Ages; to them time was plentiful and
there was no need to look upon it as something precious.9
The new concern with time running out was much in evidence by the
sixteenth century. The phrase "time is money" dates from this period,
as does the invention of the pocket 'watch, in which time, like money,
could be held in the hand or pocket. The mentality that seeks to grasp
and control time was the same mentality that produced the world view
of modern science. Western industrial nations have pushed this change
in attitude to an almost absurd conclusion. Our cities are dotted with
banks that post the time in large electronic lights that flash minute by
minute and sometimes second by second (there is one in Piccadilly Circus
which actually tells the time in tenths of a second). From the seventeenth
century on, the clock became a metaphor for the universe itself.10
Clearly, then, one can speak of a general "congruence" between science and
capitalism in early modern Europe. The rise of linear time and mechanical
thinking, the equating of time with money and the clock with the world
order, were parts of the same transformation, and each part helped to
reinforce the others. But can we make our case more strongly? Can we
illustrate the interaction in terms of problems picked, methods used,
solutions found, in the careers of individual scientists? In what follows,
I shall attempt to demonstrate how these trends crystallized within the
mind of Galileo, a figure so central to the scientific Revolution. But
our understanding of Galileo depends in part on our awareness of yet
another aspect of the changes described above: the erosion of the barrier
between the scholar and the craftsman which occurred in the sixteenth
century. For many scientists, including Galileo, it was the availability
of a new type of intellectual input which enabled their thoughts to take
such novel directions.
Much has been made of the refusal of the College of Cardinals to look
through Galileo's telescope, to see the moons of Jupiter and the craters
on the surface of the moon. In fact, this refusal cannot be ascribed to
simple obstinacy or fear of truth. In the context of the time, the use of
a device crafted by artisans to solve a scientific (let alone theological)
controversy was considered, especially in Italy, to be an incomprehensible
scrambling of categories. These two activities, the pursuit of the truth
and the manufacture of goods, were totally disparate, particularly in
terms of the social class associated with each. Bacon's argument for a
relationship between craft and cognition had as yet made little headway
even in England, a country that, compared to Italy, had undergone an
enormous acceleration in industrial production. Galileo, who studied
projectile motion in the Venice arsenal, conducted scientific studies in
what amounted to a workshop, and claimed to understand astronomy better
by means of a manufactured device, was something of an anomaly in early
seventeenth-century Italy. Where did such a person come from?
It was not until the late fifteenth century that the strong intellectual
bias against craft activity, with its lower-class associations, began
to break down. The crisis in the feudal economic system was accompanied
by a historically unprecedented increase in the social mobility of the
artisan class (including sailors and engineers).11 At the same time,
scholarly attacks on Aristotle (and they were not typical) drew ammunition
from the history of technological progress, and in doing so lavished
praise on the now exalted artisan, "who sought truth in nature not in
books."12 The result -- and the trickle which began ca. 1530 became a
torrent by 1600 -- was a host of technical works published by artisans
(very
Dean Wesley Smith, Kristine Kathryn Rusch
Martin A. Lee, Bruce Shlain