arrived on June 30 a local contractor had been in to fashion a few office cubicles and a large library space out of the bare interior. The next day Xerox's Palo Alto Research Center officially opened for business at 3180 Porter Drive.
Pake had also been busy. While closing out his final semester's teaching obligations at Washington, he wrestled with the challenge of getting up to speed on the science of digital computing. He felt like an old dog trying to learn new tricks. "I was starting from scratch," he said. "I had to ask around to find out who are the good people, what are the big issues and so on. But I did wony because I was not a computer scientist."
He did, however, know one person who boasted a first-rate familiarity with the Young Turks of the new discipline: Bob Taylor.
Pake had met Taylor in 1964, back when Washington University undertook an unusual rescue operation for Wes Clark, the MIT computer pio neer. Among Clark's idiosyncrasies was a visceral antipathy to the concept of time-sharing. ("I'm one of the oldest continuing floating objectors in the business," he once told an interviewer.) Time-sharing, he believed, encouraged institutions like universities to lust after grander and costlier machines tiiat were by their nature inefficient for the small-scale work students and professors typically did. Their only virtue was that they could be paid off by overcharging every user for his or her time-slice of the entire behemoth, no matter how much of it the user actually employed. Thus was computing rendered more remote and intimidating than ever—a backwards trend exemplified in Clark's view by the archetypal system at MIT: "That of a very large International Business Machine in a tightly sealed Computation Center: The computer not as tool, but as demigod." What Clark found even more troubling was that subdividing the main processor, as time-sharing did, rendered impossible the sort of display-based research that Ivan Sutherland had achieved so spectacularly on the TX-2. No user of a time-shared computer could ever monopolize the processor long enough to drive a coherent visual display as Sutherland had. (Clark allowed the TX-2 to be shared, but only serially—you signed up for a block of time on it, but during that period the entire machine was yours.) Time-sharers were limited to communi cating with their machines via teletype, because the sluggish rate at which people typed was what gave the system the necessary opportunities to shift its attention from one customer to another between key strokes.
Clark thought computer science would be better served by jumping directly to single-user machines, even if that meant temporarily making do with underpowered computers. "He would talk about how it was not going to be too many years before we would have a computer you could hold in your hand," recalled Severo Ornstein, a PARC engineer who was one of Clark's longtime associates. "At that time computers were filling buildings larger than this one—a single computer. But he said, 'Yeah, you'll just paint 'em on your desk, just like that.' So a lot of us felt that time-sharing was an enormous waste."
Starting in 1962 Clark underscored his conviction by designing and building the legendary "LINC." (Its name stood for "Laboratory Instrument Computer" but echoed the name of its birthplace, MIT's Lincoln Lab.) The LINC was unique for its time in that it could be operated by a single user from a desk-sized console, aldiough its processor and memory were housed in a wardrobe-sized unit typically concealed in a nearby closet. Designed specifically to serve biomedical research rather than as a general-purpose machine—which helped keep it compact—the LINC "was the first machine that you could take apart and put in the back of your car, carry somewhere else, put back together again, and it would run," Ornstein recalled. "That idea had never previously seemed conceivable."
But the machine was
Philippa Ballantine, Tee Morris