do anything else, still sank shallow wells that could sip a bit of the lingering gas or oil. But beyond that, the industry in Pennsylvania was, for all intents and purposes, dead.
There was no way to know it at the time, but the grim calculus that had made the death of the Appalachian fields appear a certainty was already changing. After enduring a series of energy crises, Americans by the early 1990s had realized that foreign oil truly had us in a stranglehold, and no matter how much we drilled for oil, relief at the pump would be years, maybe decades, away, and even then, real relief would come only if and when we could develop and deliver a reliablealternative to oil. The much-touted promise of a “clean coal” alternative, if it could ever be developed, was also far beyond the horizon. Wind and solar and biofuels and other renewable and environmentally safer alternatives were still in their infancy. Decades earlier, the Carter administration had stressed the need to develop cleaner-burning and presumably abundant natural gas as an energy source, but neither that administration nor subsequent ones thought that it made financial sense to spend much time seeking gas from unconventional sources such as shales. In fact, so little attention was paid to such unconventional sources that by the turn of this century, serious students of energy were warning that the nation might be running out of gas, among them analyst Julian Darley. In his 2004 book,
High Noon for Natural Gas
, Darley warned that even if the nation could shed its reliance on foreign oil, it would still face an energy apocalypse if it opted to stake its future on ever-dwindling supplies of natural gas.
Though the nation still had vast reserves of gas—almost 1,300 trillion cubic feet of the stuff was the number most commonly bandied about by analysts at the beginning of the century—most of it was trapped in tight sands or locked inside solid rock like the Marcellus Shale, buried more than a mile down. Experts believed that we still didn’t have the technology to release it, at least not in a way that would make enough money for the gas companies to be worth their while. And so, within ten years, analysts warned, we would have to go, hat in hand, to the Russians and the countries of the Middle East to buy natural gas from them.
But the history of oil and gas exploration in America is filled with stories of desperate men making Hail Mary passes to the astonishment of everyone, including themselves, and what those experts didn’t know was that in a remote Texas gas field, a handful of drillers were already working on a project that would prove them wrong. It happened in the late 1990s, at a poorly producing gas well called the Simms No. 1, in a forgotten corner of a 6,500-foot-deep shale field called the Barnett Play.
Years earlier, the Texas-based company Mitchell Energy had drilled a well into the organically rich Barnett Shale, but after some initial success, the company now had little to show for its efforts. Engineers had used a state-of-the-art process devised by Halliburton, akind of hydraulic fracturing first tested, interestingly enough, at a site not very far from the site of Karney Cochran’s Wellsville misadventure. In fact, Cochran, by then an old man, had been invited by Halliburton to witness the initial experiment. It wasn’t the first time anyone had tried fracturing rocks to free the petroleum products inside, though the previous attempts were, to put it gently, rather ill-advised. Like the time in 1857 in Fredonia when one of Hart’s family members had tried to use yet another Chinese invention—a barrel load of gunpowder—to shatter the rock at the bottom of one of Hart’s early wells. That experiment produced mixed results.
Halliburton’s experiment, however, was an unqualified success. Under the original protocols developed for hydraulic fracturing, drillers pumped large amounts of highly compressed nitrogen foam (later replaced