a new position above the mollusc’s head. Torsion is genetically determined, but a separate gene deals with shell coiling. It is an ancient gene, known as a nodal, that evolved long ago and today governs the asymmetry of many animals, including humans: we wear our hearts on the left thanks to the same gene that makes snails twist one way or the other.
Looking back into the fossil record, there are lineages of gastropods that over time have untwisted their shells, like limpets, until they look like conical Asian hats. In at least one group, molluscs have unwound their shells, then around 100 million years later, against all the odds, their descendants have coiled themselves back up again. These changes would have been driven by mutations in the coiling gene.
Given that a single mutation in an inherited nodal gene can switch a snail from being dextral to sinistral, all in one go, it raises the interesting possibility that a new species could instantly evolve. The mating struggles that take place between mismatched shells create exactly the kind of barrier that can subdivide populations and allow new species to split off, in this case leading to separate right- and left-coilers that can’t interbreed. And there are a few spots on the planet where having a rare sinistral shell can put a snail at a distinct advantage.
Satsuma snails live in the Ryukyu archipelago in southern Japan and a surprising number of them are left-coilers. Itjust so happens that these islands are also the realm of Iwasaki’s Snail-eating Snakes. A land-snail expert from Kyoto University, Masaki Hoso , studies these snails and has spent many hours watching what happens when a snake sneaks up on a target, sliding up silently and swiftly striking from behind. Because of the way their mouths are shaped, the snakes can grasp a shell with the upper jaw while plunging their teeth through the aperture and into the soft flesh inside – but only in right-coiling snails. When they try the same thing on left-coiling snails, the snake can’t get enough purchase and the shell pings off to safety. Snakes pose such a terrible threat for satsuma snails that when young dextral snails are attacked, they voluntarily amputate their feet (geckos do a similar thing, dropping their tails to confuse predators while they dash off and make their escape). Hoso has never spotted a sinistral satsuma resorting to such a risky escape strategy; they always hold on to their feet.
Mapping out the distribution of snails and snakes, Hoso found that left-coiling species of satsuma snails only occur in or near areas where there are also these fearsome reptilian predators. So it seems that avoiding the chomp of lopsided snake jaws gives the left-coiling snails the edge over right-coilers and as a consequence sinistral snails have flourished. Although it will probably be only a matter of time before the snakes likewise evolve to become left-handed.
When nature is allowed to play
The final flourish in the process of shell-making is where molluscs are at their most creative. As well as forming intricate shapes, shells are also decorated in elaborate patterns. There are few other animals that paint themselves in such a profusion of complex markings. With their spots, stripes, waves, zigzags and triangles you could perhaps assume molluscs are simply playing with their shells.
There are two strange things about the shell patterns. First, no one knows which pigments molluscs use to painttheir shells. So far, only a broad group of organic molecules has been detected, including porphyrins and polyenes. The closest anyone has come to pinpointing an actual shell pigment is a carotenoid in the yellow rings of Money Cowries.
The second peculiar thing about seashell patterns is that often they go completely unseen. Many ornately painted bivalves and gastropods spend their lives hidden out of sight, burrowed in sand or mud. And there are some that grow a layer of protein (the periostracum) over the