physiology of the heart. Imaging of the coronary arteries, however, remained out-of-bounds as physicians believed that a direct injection of dye into a coronary vessel would cause cardiac arrest.
Another paradigm shift occurred in 1958 when Dr. Mason Sones, a Cleveland Clinic cardiologist, made one of medicine’s great serendipitous discoveries after his catheter accidentally engaged the origin of a twenty-six-year-old patient’s right coronary artery and dye was mistakenly injected. A great commotion ensued in the procedure room, but the patient did not die, and Sones’s accident became the world’s first coronary angiogram. Finally there was a way to create a detailed road map of the arteries supplying the heart.
• • •
In the early years, cardiac catheterization was an audacious and cumbersome procedure requiring an overnight hospital stay. The X-ray dye was quite toxic, frequently causing nausea and vomiting and, occasionally, cardiac arrest. Patients were instructed to cough violently, a primitive but effective way of maintaining a minimal cardiac output should the heart rate suddenly drop. Manipulation of rigid catheters in diseased arteries was hazardous work, occasionally resulting in vessel injury, perforation, or closure. The mortality rate was a risky 1 percent when cardiac catheterization was originally introduced and dropped steadily thereafter, but the procedure continued to carry hazards. My uncle Henry died during a cardiac catheterization in 1980 while I was a junior in college. I remember my father calling to give me the sad news that his older brother was dead and then trying to describe the procedure that had killed him. I had never before heard of heart catheterization; I remember thinking how terrible it was that an ostensibly healthy man could die while undergoing it.
• • •
I stand on the right side of the patient facing a huge, flat panel screen suspended from ceiling-mounted rails by a thick metal post. Not your typical big-screen TV, the glossy $100,000 ultra-high-resolution monitor is capable of simultaneously displaying a dozen medical-grade inputs and is powered by a six-foot-tall rack of video servers in the next room. Interventional cardiologists are often gadget geeks who wouldn’t be caught dead with last year’s phone, and a cath lab is a multimillion-dollar cathedral to the latest technology.
With the patient asleep and the lights in the room dimmed, I reach up to focus a small surgical spotlight on the upturned right wrist. In most patients, blood is supplied to the hand through the ulnar and radial arteries, redundant vessels that meet in a vascular arch in the palm. Like the interstate highway system, all arteries eventually connect, and the radial artery, easy to identify and compress, lying just under the skin, makes an ideal entry point.
In the 1960s and 1970s, coronary arteriography required a surgical cut-down to expose the brachial artery, located in the crook of an elbow. In the late 1980s and 1990s, the preferred route of entry became the femoral artery, a large vessel in the groin accessible by needle, but often located deep under the skin and occasionally prone to severe or fatal bleeding. In the United States, use of the radial artery for access is relatively new, but European cardiologists have used this method for years, recognizing its superior safety and comfort compared with puncturing the leg. American doctors have been slow to adopt the technique because, until recently, very few were taught it during their years of training, there is a learning curve that requires several dozen cases before flattening out, and some physicians are reluctant to learn new tricks. I learned the procedure from my former fellow, and now colleague, Dr. Ramesh Mazhari, who quite patiently taught her former teacher.
Using a very fine needle, I inject a small amount of lidocaine under the skin on the thumb side, about two finger breadths above the horizontal