twenty-eight days. The rejection mechanism had, indeed, been neutralized, but the excessive radiation was fatal.
For a brief period, Garrett was discouraged. Then came a major breakthrough. Sir Macfarlane Burnet, of Australia, and Dr. Peter B. Medawar, of England, proved that the rejection mechanism in one human being could be taught to accept tissue transplants from another, under certain circumstances. Experiments with rodents showed that if a mouse embryo were injected with cells from a non-identical donor mouse, then later, when the embryo was an adult, it could accept skin grafts from the same donor without rejection. For this, Burnet and Medawar won the Nobel Prize in 1960. And, at once, John Garrett, along with hundreds of others in his field, was encouraged to believe that soon it might be possible to make a homograft of legs, kidneys, lungs, and hearts.
In that optimistic period, Dr. Robert A. Good, of the University of Minnesota , was saying, ‘Though much more basic research is needed, the first successful organ graft between non-identical human beings could conceivably, with luck, take place tomorrow.’ And Garrett, one midnight in bed beside Saralee, was telling her, ‘I believe it, I absolutely believe it—and I’m going to be the one to do it—with a living heart.’
The days spun ceaselessly past, and he had no knowledge of date or week or month. It was as if he were on a perpetual hamster’s wheel. He isolated himself from his colleagues, because he had no time for small talk or relaxation. He went ahead alone against the enemy, trying to find a weapon to overcome the immunological barrier, the rejection mechanism. He experimented with massive X-ray treatments, with steroids, with nitrogen mustards. Each led to a dead end. No matter how slight or drastic the modifications that he made, these weapons, while they did indeed neutralize the rejection mechanism, also destroyed white cell production, stripped the body of immunity to disease, killed in other ways what he was trying, after all, to save. The problem remained as large as ever: to discover a treatment or serum that was selective, that would not destroy all reactive or immunity mechanisms, that would neutralize whatever it was that rejected a foreign graft, and leave unharmed that which protected the body against disease.
Once, depressed by the impossible maze, Garrett tried to find a path around it. In that time, he fancied that he could simply ignore the rejection mechanism by circumventing it, by inventing a compact artificial heart of plastic material, that could be grafted inside the chest cavity and that would be accepted because it would be non-reactive. For months, the idea excited him. A plastic heart replacing a failing or damaged natural heart inside the human body would give its host—literally—a new lease on life.
Methodically, he studied all the mechanical hearts then in existence. These ranged from the heart pump and oxygenator created by Dr. Clarence Dennis in 1951, to a two-chamber pump run by batteries (it had kept a dog alive nine hours) produced by a team at the University of Illinois. Garrett saw that these mechanical heart-lung devices all had one factor in common—they were used outside the patient’s body to keep the patient alive during cardiac surgery. What Garrett envisioned was such a device inside the body—the natural heart removed, the machine heart substituted—located in exactly the same place: orthotropous transplantation, with an external power pack. But there were question marks here, too, not the least being how to keep the plastic bag, between the two lungs, contracting and relaxing without failure. It might be resolved in the future, Garrett decided, but he preferred to grapple with the present, the probable.
Unhappily, he returned to his maze. He must find his way on the battlefield where the familiar enemy, now so well known to him, was the rejection mechanism that barred
Zak Bagans, Kelly Crigger
L. Sprague de Camp, Fletcher Pratt