Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man

Free Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man by Mark Changizi Page B

Book: Harnessed: How Language and Music Mimicked Nature and Transformed Ape to Man by Mark Changizi Read Free Book Online
Authors: Mark Changizi
Tags: Non-Fiction
For example, when you utter “what” in the sentence “What book is this?” your mouth goes to the anatomical position for a “t,” but does not ever release the “t” (unless, say, you are angry and slowly enunciating the sentence). Such instances of plosive stop sounds are quite common in language, but less so than released plosive sounds—there are many languages that do not allow unreleased plosives, but none that do not allow released plosives. John Locke tabulated from the Stanford Handbook that, in 32 languages that possessed word-position information, no plosives were off limits at word starts (where they would be released), but 79 plosives were impermissible at word-final position (where they are typically unreleased). Also, among the words we collected from 18 languages, 16,130 of a total of 18,927 plosives, or 85 percent, were directly followed by a sonorant (and thus were released), and therefore only 2,797 plosives, or 15 percent, were unreleased. And even in languages (like English) that allow both kinds of plosive sounds, plosives are more commonly employed in their explosive form, something we will talk about in a later section (“In the Beginning”). This fits with the pattern in nature, where explosive hits are more common than dampening hits.
    Not only does language have both hit sounds as part of its repertoire, but, like nature, it treats the unreleased “t” sound and the released “t” sound as the same phoneme. This is remarkable, because they are temporal opposites: one is like a little explosion, the other like a little anti explosion. One can imagine, as a thought experiment, that people could have ended up with a language that treats these two distinct “t” sounds as two distinct phonemes, rather than two instances of a single one. In light of the auditory structure of nature, however, it is not at all mysterious: any given hit can have two very different sounds, and language carves at nature’s joints.
    In light of the two sounds hits make, there is a simple kind of sound we can make, but that language never includes as a phoneme: “beep,” like an electronic beep or like Road Runner. A beep consists of a sudden start of a tone, and then a sudden stop. Beeps might, at first glance, seem to be a candidate for a fundamental constituent of communicating by sound: what could be simpler, or more “raw,” than a beep? However, although our first intuitions tell us that beeps are simple, in physics they are not. In the real world of physical events among objects, beeps can only happen when there is a hit (the abrupt start to the beep), a ring that follows (the beep’s tone), and a second hit, this one a dampening one (the abrupt beep ending). A “simple” beep can’t happen in everyday physics unless three simple constituent events occur. And we find that in languages as well: there are no beeplike phonemes. To make a beep sound in language requires one to first say a plosive of the released kind, then a (nonwiggly) sonorant, and finally an unreleased plosive . . . just like when we say the word “beep.”
    Hesitant Hits
    Bouncing a basketball could hardly be a simpler event. A bounce is just a hit, followed by a ring. And as we discussed earlier, the sound is a sudden explosion of many frequencies at the initiation of the hit, followed by a more tonal sound with a timbre due to the periodic vibrations of the basketball and floor. Although hits seem simple, they become complicated when viewed in super slow motion. After the ball first touches the ground, the ball begins to compress, a bit like a spring. After compression, the ball then decompresses as it rises on its upward bounce. Although these ball compressions and decompressions are typically very fast, they are not instantaneous: the physical changes that occur during a hit occur over an extended period of time, albeit short. What happens during this short period of time depends on the nature of the objects

Similar Books

Wings of Lomay

Devri Walls

A Cast of Vultures

Judith Flanders

Cheri Red (sWet)

Charisma Knight

Angel Stations

Gary Gibson

Can't Shake You

Molly McLain

Charmed by His Love

Janet Chapman

Through the Fire

Donna Hill

Five Parts Dead

Tim Pegler