not pronounce the word “ha-chot.”
Whereas language has incorporated nature’s hit-slide phoneme as one of its phoneme types, slide-hits, on the other hand, are not one of nature’s phonemes, and a harnessing language is not expected to have phonemes that sound like slide-hits. Indeed, that is the case. Languages do not have the symmetric counterpart to affricates—phonemes that sound like a plosive initiated by a fricative. It is not that we can’t make such sounds—“st” is a standard sound combination in English of this slide-hit form, but it is not a single phoneme. Other cases would be the sounds “fk” and “shp,” which occur as pairs of phonemes in words in some languages, but not as phonemes themselves.
By examining physics in greater detail, in this section we have realized that there is a fourth fundamental building block of events: hit-slides. And just as languages have honored the other three fundamental event atoms as their principal phoneme types, this fourth natural event atom is also so honored. Furthermore, the symmetrical fifth case, slide-hits, is not a fundamental event type in nature, and we thus expect—if harnessing has occurred—not to find fricative-plosives as language phonemes. And indeed, we don’t find them.
Slides that Sing
Recall that slides are, in essence, built from very many little hits in quick succession. The pattern of hits occurring inside a slide depends on the nature of the materials sliding together, and this pattern is what determines the nature of the slide’s sound. If you scrape your pencil on paper, then because the paper’s microscopic structure is fairly random, the sound resulting from the many little hits is a bit “noisy,” or like radio static, in having no particular tone to it. (The pencil scraping may also cause some ringing in the table or the pencil, but at the moment I want you to concentrate only on the sound emanating from the slide itself.)
However, now unzip your pants. You just made another slide. Unlike a pencil on paper, however, the zipper’s regularly spaced ribs create a slide sound that has a tonality to it. And the faster you unzip it, the higher the pitch of the zip. Slides can sing. That is, slides can have a ringlike quality to them, due not to the periodic vibrations of the objects, but to the periodicity in the many tiny hits that make up a slide.
Whether or not a slide sings depends on the nature of the materials involved, and that’s why the voice of a slide is an auditory feature that brains have evolved to take notice of: our brains treat singing and hissing slides as fundamentally different because these differences in slide sounds are informative as to the identity of the objects involved in the slides. Although slides can sing, it is more common that they don’t, because texture with periodicity capable of a ringlike sound is rare, compared to random texture that leads to generic friction sounds akin to white noise.
Do human languages treat singing slide sounds as different from otherwise similar nonsinging slide sounds? Yes. Languages have fricatives of both the singing and the hissing kinds, called the voiced and unvoiced fricatives, respectively. Voiced fricatives include “z,” “v,” “th” as in “the,” and the sound after the beginning of “j” (which you will recall is an affricate, discussed earlier in “Nature’s Other Phoneme”). Unvoiced fricatives include “s,” “f,” “th” as in “thick,” and “sh.” Just as singing slides will be rarer than nonsinging slides—because the former require special circumstances, namely, slides built out of many periodically repeating hits—voiced fricatives are rarer in languages than unvoiced fricatives. John L. Locke tabulated data in his excellent 1983 book, Phonological Acquisition and Change , and discovered that “s” is found in 172 of 197 languages in the Stanford Handbook [1] (87 percent) and in 102 of 317 languages in the UCLA