region sequences. I didnât need to have an accurate pedigree, because if there really had been only one female to start with they all had to trace back to her anyway. If the control region was going to be stable enough to be any use to us, then its sequence should be the same, or very similar, in all living hamsters.
I asked Chris Tomkins, an undergraduate student who, in the summer of 1990, had just started his final year genetics project in my laboratory, to see what he could find out about the golden hamster. The first thing he discovered is that, properly speaking, they are not called golden hamsters at all but Syrian hamsters. Chris went straight down to the Oxford public library and came back with some good news: he had found out that there was a National Syrian Hamster Council of Great Britain. He called the secretary and next day we were on our way to an address in Ealing, west London. Here we were greeted, with no little suspicion, by the secretary of the Syrian Hamster Club of Great Britain â Roy Robinson (now sadly deceased).
The late Mr Robinson was the product of a vanished age, a self-taught amateur scientist of great distinction. His dimly lit study was full of books on animal genetics, many of them written by himself. He pulled out his book on the Syrian hamster. His eyesight was very poor, and even with the help of very thick spectacles he needed to hold the text right up close to his face. He confirmed the story I had read as a boy. Apparently, in 1930 a zoological expedition to the hills around Aleppo (now Halab) in north-west Syria had captured four unusual small golden-brown rodents, one female and three males, and taken them back to the Hebrew University in Jerusalem. They were kept together, and the female soon became pregnant and gave birth to a litter. There was clearly going to be no difficulty in breeding them in captivity. The university began to distribute them to medical research institutes around the world, where they became popular as an alternative to the more usual rats and mice â though they were tricky lab animals, active only at night, bad-tempered and prone to bite their handlers (good for them!). The first recipient was the Medical Research Council institute at Mill Hill in north London, which passed some on to London Zoo. By 1938 the first golden hamsters had reached the United States.
Sometimes, lab animals that are no longer required are taken home by staff and kept as pets rather than being killed. Over time, hamsters spread from one household to another and, as their popularity increased, commercial breeders added them to their catalogues and groups of hamster enthusiasts started up. In 1947 a piebald hamster appeared in one breeding colony â the first of many coat colour varieties, caused by spontaneous mutations in the coat colour genes, it showed itself because of the inbreeding within the colony. It wasnât difficult to mate the mutants with each other and produce a pure-bred strain. Breeders became ever keener to find new coat colours, and over the next few years many different such mutants were discovered and pure-bred strains established â cream, cinnamon, satin, tortoiseshell and many more. Hamsters made good pets and the availability of strains with different coats only added to the interest. Thus began the population explosion: today there are over three million hamsters kept as pets all over the world.
Mr Robinson lived in an old horticultural nursery, which at the time we visited was quite run down. A long, rectangular plot enclosed by walls of beautiful old brick contained overgrown flower beds and a handful of greenhouses with cracked and broken panes. There were also two substantial sheds, and we made our way to the first one on the left, where Mr Robinson unlocked the door to let us in. We could not believe our eyes. Inside were rack upon rack of cages, all labelled and numbered, within each of which nestled a family of hamsters. Mr