for the evaluating the relevance of AOA indicators, and not their outright installation.
Chapter 6: "I Have the Controls"
As soon as the autopilot disconnected First Officer Bonin announced “I have the controls.” At that moment his skills and knowledge were put to the test. When the automatic systems stop functioning (‘the magic goes away’) and flight control laws degrade, a pilot must identify and understand the situation, and consolidate many areas of understanding into his actions. An understanding of aerodynamics, the characteristics of the A330’s fly-by-wire control system, performance, procedures, and raw instrument flying skills must be applied simultaneously.
First Officer Bonin’s inappropriate pitch up, attempts at stall recovery solely with power, misidentification of a over-speed situation, difficulty handling the airplane in Alternate Law at high altitude, and other failures highlight many the areas of understanding that must be fully grasped by every pilot crewmember to operate safely.
Understanding the Machine
Would this accident have happened in a Boeing? Some say no, but history does not necessarily agree.
The accident happened in a Airbus A330-200. A marvel of modern technology, without question. But the Airbus has its own unique qualities that pilots must understand to operate it properly and safely.
There is no question that the Airbus is different from any other civilian aircraft. Its flight control handling is different, its autothrust system works differently, and it has sidestick controllers instead of conventional control wheels, which is definitely different. I do not think it is a dangerous or bad design. In fact, overall I think it is a good design.
When I was learning to fly gliders, already an airline pilot at the time, my glider instructor pointed out that the glider was not just an airplane without a motor. It was in fact a whole different category of aircraft. Pilots will recall that the word “category” divides aircraft into airplanes, balloons, rotorcraft, gliders, airships, etc., so it is in fact a legal definition too. But while all aircraft obey the same laws of physics and aerodynamics, they have their own unique handling characteristics.
Due to a glider’s long slender wings and the slow speeds that they often operate at, a glider pilot’s coordination of rudder and aileron inputs can be quite different from a regular airplane. In tight slow turns, such as when climbing in a thermal, a glider pilot may actually have opposite aileron and rudder applied - a virtual sin in the airplane world. These differences are not unsafe nor difficult to learn or even master, but they are different. It takes understanding the principles involved and practice, and that is why there is separate license for each category.
I think that the different handling qualities of an Airbus fly-by-wire airplane have a similar degree of difference from a conventional airplane, as an airplane has to a glider. While not designated as its own category, the Airbus, like any large or jet powered airplane, requires training and a specific type rating for that model in order to operate it as a pilot, as it should.
These differences may have played a part in the failure of the AF447 pilots to recover from their loss-of-airspeed incident. They may not have fully understood what inputs they were making to the flight controls, or what they were really asking for. But they should have.
When everything is working right, as it is more than 99.9% of the time, the Airbus fly-by-wire system provides excellent protection from inadvertent stall, flight envelope exceedance, wind shear recovery, and more. When something is not working properly it is important for the pilot to understand what has changed and that he is now fully responsible for not exceeding normal limits. That responsibility is something most pilots take for granted anyway.
Flight Control and Stalls Review
In conventionally controlled